Visual Working Memory Declines when More Features Must be Remembered for Each Object

Klaus Oberauer, Simon Eichenberger

Full Text: PDF   Paper Package: Oberauer2013_1.0 tar.gz PID: 11022/0000-0000-1F63-F


The article reports three experiments investigating the limits of visual working-memory capacity with a single-item probe change-detection paradigm. Contrary to previous reports (e.g., Vogel, Woodman, & Luck, 2001), increasing the number of features to be remembered for each object impaired change detection. The degree of impairment was not modulated by encoding duration, size of change, or the number of different levels on each feature dimension. Therefore, a larger number of features does not merely impair memory precision. The effect is unlikely to be due to encoding limitations, to verbal encoding of features, or to chunk learning of multi-feature objects. The robust effect of number of features contradicts the view that the capacity of visual working memory can be described in terms of number of objects regardless of their characteristics. Visual working-memory capacity is limited on at least three dimensions: the number of objects, the number of features per object, and the precision of memory for each feature.


Anderson, D. E., Vogel, E. K., & Awh, E. (2011). Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. Journal of Neuroscience, 31, 1128-1138.

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622-628.

Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9, 1-11.

Berger, J. O. (2005). Bayes Factor. In S. Kotz, N. Balakrishnan, C. Read, B. Vidakovic & N. L. Johnson (Eds.), Encyclopedia of Statistical Sciences, Second Edition (2 ed., Vol. 1, pp. 378-386). Hoboken, NJ: Wiley.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-185.

Cowan, N. (2005). Working memory capacity. New York: Psychology Press.

Cowan, N., Blume, C. L., & Saults, J. S. (2012). Attention to attributes and objects in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition.

Delvenne, J.-B., & Bruyer, R. (2004). Does visual short-term memory store bound features? Visual Cognition, 11, 1-27.

Fiedler, K. (2011). Voodoo correlations are everywhere - not only in neuroscience. Perspectives on Psychological Science, 6, 163-171.

Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision, 10, 1-11.

Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capacity limits in visual working memory. Current Opinion in Neurobiology, 20, 177-182.

Fukuda, K., Vogel, E. K., Mayr, U., & Awh, E. (2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17, 673-679.

Ganor-Stern, D., Seamon, J. G., & Carrasco, M. (1998). The role of attention and study time in explicit and implicit memory for unfamiliar visual stimuli. Memory & Cognition, 26, 1187-1195.

Johnson, J. S., Hollingworth, A., & Luck, S. J. (2008). The role of attention in the maintenance of feature bindings in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 41-55.

Kruschke, J. K. (2011). Doing Bayesian data analysis: A tutorial with R and BUGS. New York: Academic Press.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

Morey, C. C., & Bieler, M. (2012). Visual short-term memory always requires general attention. Psychonomic Bulletin & Review, 20, 163–170. doi: 10.3758/s13423-012-0313-z

Morey, C. C., & Cowan, N. (2004). When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychonomic Bulletin & Review, 11, 296-301.

Morey, R. D., & Rouder, J. N. (2012). BayesFactor (Version 0.8.8). Retrieved from

Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1-17.

Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effeccts in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021-1034. doi: 10.1037/0096-1523.29.5.1021

Murray, A. M., Nobre, A. C., Astle, D. E., & Stokes, M. G. (2012). Lacking control over the trade-off between quality and quantity in visual short-term memory. PLoS ONE, 7(8), e41223. Retrieved from doi:10.1371/journal.pone.0041223

Navon, D. (1984). Resources - a theoretical soupstone? Psychological Review, 91, 216-234.

Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific Utopia: II. Restructuring incentives and practices to promote truth over publishability. Perspectives on Cognitive Science, 7, 615-631.

Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the "strong-object" hypothesis. Perception & Psychophysics, 64(1055-1067).

R-Development-Core-Team. (2012). R: A language and environment for statistical computing (Version 2.15.2). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from URL:

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 11-163.

Riggs, K. J., Simpson, A., & Potts, T. (2011). The development of visual short-term memory for multifeature items during middle childhood. Journal of Experimental Child Psychology, 180, 802-809.

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356-374.

Rouder, J. N., Speckman, P. L., Sun, D., & Morey, R. D. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225-237.

Stevanovski, B., & Jolicoeur, P. (2011). Consolidation of multifeature items in visual working memory: Central capacity requirements for visual consolidation. Attention, Perception, & Psychophysics, 73, 1108-1119.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92-114.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32, 1436-1451.

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779-804.

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J. (2011). Statistical evidence in experimental psychology: An experimental comparison using 855 t Tests. Psychological Science, 6, 291-298.

Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48-64.

Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120-1135.

Wilson, K. E., Adamo, M., Barense, M. D., & Ferber, S. (2012). To bind or not to bind: Addressing the question of object representation in visual short-term memory. Journal of Vision, 12, 1-16.

Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object's features in visual working memory. Psychonomic Bulletin & Review, 15, 223-229.

Xu, Y. (2002). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 28, 458-468.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233-236.

Zhang, W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22, 1434-1441.